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Cluster variation method (CVM) was applied to calculate phase equilibria of metal-hydrogen
systems. Two subjects are introduced in the present report. One is the summary of previous
studies on the Pd-H system, and it is demonstrated that a single CVM free energy formula can
systematically derive information of phase equilibria, intrinsic stability, and short range order
diffuse intensities. The second subject is the theoretical calculations of superabundant vacancy
(SAV) formation. Within the square approximation of the CVM, it is shown that abundant
vacancies are introduced with the absorption of hydrogen when the interaction between vacancy
and hydrogen is considered.
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1. Introduction

The cluster variation method (CVM)[1] has been recog-
nized as one of the most reliable theoretical tools in
evaluating phase stability and phase equilibria. The topology
of the phase boundary and the order of the transition derived
and predicted by the CVM are quite accurate and satisfactory.
Moreover, the wide range of atomic correlations explicitly
considered in the free energy function provides detailed
information of local atomic configurations in the equilibrium
state. In fact, to identify the location of hydrogen in metal-
hydrogen systems is one of the most important subjects in
clarifying both the stabilization and diffusion mechanisms,
which aids to develop a new and efficient hydrogen storage
material. The author has been attempting theoretical inves-
tigations[2,3] of the phase equilibria and phase stability of a
metal-hydrogen system based on the CVM.

In the present study, summaries of the two theoretical
investigations[2-4] on metal-hydrogen systems performed by
the author�s group are provided. One is the calculations of

phase equilibria and site correlations of H in Pd-H alloys.
One peculiar feature of this system is that the phase
separation takes place in the high temperature region while
ordered phases appear in the low temperature region.
Coexistence of these two opposite tendencies has attracted
broad attention, and Oates and the present author[2,3]

attempted a series of theoretical investigations based on
the phenomenological expression of the interaction energy
combined with CVM. The major results are summarized in
the first part of this report to demonstrate the reliability as
well as a general framework of the CVM.

As a challenging topic of the applications of the CVM,
theoretical calculations of superabundant vacancy (hereafter
SAV) phenomena are attempted in the second part. It has
been reported that due to the absorption of H, an enormous
amount of vacancies are introduced in metals and alloys.
This phenomenon was first discovered by Fukai and his
coworkers,[5] and Fukai[6] himself gave a clear explanation
of the mechanism of the SAV in terms of the binding energy
of vacancy and hydrogen. Also, Oates et al. attempted
theoretical calculations[7] by applying the Schottky-Wagner
approximation to an appropriate set of species� chemical
potentials. They further discussed the possibility of vacancy
ordering at high vacancy concentration. However, these
explanations were based on the Bragg-Williams approxi-
mation[8], which is a primitive point approximation in the
CVM hierarchy and the atomic correlations among metallic
atoms, hydrogen atoms, and vacancies are not properly
taken into account. As far as the author�s knowledge goes,
no theoretical studies of SAV based on the CVM have yet
been attempted. In the present report, preliminary calcula-
tions on a two-dimensional square lattice previously
performed by the present author[4] are presented.

2. CVM Free Energy

2.1 Theoretical Methods

Once an analytical expression of the free energy function
is described, one can predict the equilibrium state from the
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vanishing condition of the first order derivative. This is a
typical thermodynamics calculation of phase equilibria. It
should be, however, noted that a reliable free energy
function contains further information of stability of the
system and local atomic configuration including site occu-
pancies. The main objective of the present section is to
provide examples of how a single CVM free energy
function can yield systematic information concerning phase
equilibria, stability, and site occupancies for the Pd-H
system.

In general, an alloy internal energy can be given in terms
of cluster expansion[9] written as

E ¼
Ximax

i

vi � ni ðEq 1Þ

where i indicates various clusters which constitute the
crystal, vi is the effective cluster interaction energy for i-
cluster, and ni is the correlation function[10-12] which is
defined as the ensemble average of the spin operator r(p)
which takes either + 1 or )1 depending upon A or B atom,
respectively, located at a lattice point p in the i-cluster. The
maximum cluster contained in the expansion is designated
as imax in Eq 1, and the truncation of the expansion is
closely related to the convergence of the interaction
energies.

The location of H in Pd has been identified as the
Octahedral site (hereafter abbreviated as O-site) in the face
centered cubic lattice by neutron scattering experi-
ment.[13,14] Since the O-sites themselves form an fcc lattice,
the phase equilibria for the Pd-H system can be treated by
vacancy (hereafter Vac) )H binary equilibria on the fcc
lattice immersed in the Pd lattice. Then, the entropy is
calculated by directly applying the CVM of the fcc lattice.
One of the essential conditions imposed on the free energy
is that the maximum range of the interaction(s) assumed in
the internal energy term designated by imax should be
contained in the largest cluster (basic cluster) in the entropy
term. This is due to the fact that the range of atomic
correlation generally exceeds those of atomic interactions.
Since, as will be described latter, the internal energy given
in the present analysis includes the second nearest neighbor
pair interaction energy, the entropy term should include at
least the second nearest neighbor pair correlations. The
Tetrahedron-Octahedron approximation,[10,11] therefore, is
the minimum meaningful approximation and the entropy is
given by

S ¼ kB � ln

Q
ijk
ðN � zijkÞ!

 !8
Q
i
ðN � xiÞ!

� �

Q
ijklmn
ðN � vijklmnÞ!

 !
Q
ijkl
ðN �wijklÞ!

 !2
Q
ij
ðN � yijÞ!

 !6

ðEq 2Þ

where xi; yij; zijk ;wijkl, and vijklmn are cluster probabilities of
finding atomic arrangement specified by subscripts on a point,
pair, triangle, tetrahedron, and octahedron clusters, respec-
tively. In the conventional treatment, the numbers + 1 and )1

are usually assigned to subscripts i; j; k . . . to represent A and
B atoms, respectively. It should be noted that the entropy
formula above is for a disordered phase and the one for an
ordered phase can be derived by introducing sublattices.

It is important to note that the cluster probabilities, vfJg,
of atomic arrangement specified by {J} is related to a set of
correlation functions through a linear transformation,

vfJg ¼
1

2n
1þ

X

l2J
VJ ;l � nl

( )
ðEq 3Þ

where n is the number of the lattice points constituting the
cluster, and VJ,l is termed V-matrix[10,11], which is the sum of
products of i,j,k, etc. The advantage of the correlation
functions is the fact that they form an independent set of
configurational variables while the cluster probabilities are
mutually related through normalization and geometrical
conditions.

Hence, the free energy of the system given by

F ¼
Ximax

i

vi � ni � T � kB � ln

Q
ijk
ðNijkÞ!

 !8
Q
i
ðN � xiÞ!

� �

Q
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ðN � vijklmnÞ!

 !
Q
ijkl
ðN � wijklÞ!

 !2
Q
ij
ðN � yijÞ!

 !6

ðEq 4Þ

¼ E vif g; nif gð Þ � T � S xi; yij; zijk;wijkl; vijklmn
� �

ðEq 5Þ

can be formerly rewritten as Fðfvig; T ; fnigÞ where { vi }
and T are given whereas {ni} are unknown quantities as
variational parameters. Then, the equilibrium state is
determined by minimizing the free energy F with respect
to correlation functions through

@F

@ nif g

����
T ; nj6¼if g

¼ 0 ðEq 6Þ

It is noted that {ni} at the equilibrium state provides
information of local atomic configuration (short range order
parameter) as well as site occupancies (long range order
(LRO) parameter). Shown in Fig. 1 and Table 1 are the type
of clusters considered in the Tetrahedron-Octahedron
approximation for a disordered phase, and the correlation
functions {ni} provide SRO parameters except the point
correlation function n1 which is linearly related to a
concentration. When an ordered phase is considered, the
number of correlation functions increases due to the
breakdown of the symmetry of a disordered phase. In
particular, the introduction of the sublattice induces more
than a single point correlation function, na

1; n
b
1 . . . etc., and

the LRO parameter can be defined by the difference of point
correlation functions of different sublattices such as na

1 � nb
1.

By considering the explicit site dependencies of the free
energy, one can expand the free energy F around the
homogeneous state F0. Then, the difference provides a
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measure of the configurational fluctuation between two
lattice points p and p¢ which leads spatial inhomogeneity,

dF ¼ F � F0 ¼
1

2

X

l;l0

X

p;p0
Fll0 p; p

0ð Þdnl � dnl0 ðEq 7Þ

where Fll0 p; p0ð Þ is the second order derivative matrix
defined as @2F=ðnlðpÞ � @nl0 ðp0ÞÞ.[15-18] In fact, the first order
derivative is a measure of the phase equilibrium while the
second order derivative is that of the intrinsic stability of the
system against fluctuation. The stability analysis is most
conveniently performed by Fourier transforming dF in Eq 7
into k-space:

FtfdFg ¼
1

2

X

l;l0

X

k

Fll0 ðkÞ � dX �l ðkÞ � dXl0 ðkÞ ðEq 8Þ

¼ 1

2

X

l

X

k

KlðkÞ dZlðÞj j2 ðEq 9Þ

where Ft represents Fourier transformation, dX �l ðkÞ is the
Fourier transformation of the deviation of correlation
function, and the Hermitian properties of the second order
derivative matrix is utilized to diagonalize the matrix in
order to extract eigenvalues KlðkÞ in Eq 9. The physical

meaning is interpreted as follows. If and only if all the
eigenvalues are positive, the system is stable, while, as the
temperature is lowered and one of the eigenvalues goes
through 0, the system becomes inherently unstable against
the excitation and amplification of a particular wave vector
k0 associated with the negative eigenvalue Kl k0ð Þ. Then the
limit of the stability of the system is given as the vanishing
condition of the determinant of the second order derivative
matrix, Fll0 ðk0; c; T0Þj j ¼ 0, and the highest temperature T0
at which this condition is satisfied is termed spinodal
ordering temperature[17] and the concentration wave asso-
ciated with this negative eigenvalue is termed ordering
wave. Moreover, the inverse of the second order derivative
matrix is directly related to short range order diffuse
scattering intensity at a specified point k as:

ISROðk; TÞ / kB � T � Ft
@2F

@nj@nk

� ��1�����
k¼k�

ðEq 10Þ

Within the first and second nearest neighbor pair interaction
energies for a fcc lattice, four dominant ordering waves are
proposed.[16-18] These are Æ1 0 0 æ, Æ1 1/2 0 æ, Æ1/2 1/2 1/2 æ,
and Æ0 0 0 æ, and the wavelength and direction of each
ordering wave reflects the underlying ordered phase. It was
amply described that Æ100 æ, Æ1 1/2 0 æ, and Æ1/2 1/2 1/2 æ
waves yield L10, Chalocopyrite, and L11 ordered phases,
respectively, and Æ0 0 0 æ indicates the phase separation. It is,
therefore, deemed useful to calculate the diffuse intensities
for the four kinds of ordering waves to obtain information of
a stable ordered phase in the low temperature.

2.2 Phase Equilibria and Stability Analysis for Pd-H
System

Based on the measurements of relative standard hydro-
gen potential, Kuji et al.[19] proposed that the internal
energy E (h,T) of Pd-H system can be tacitly given as the
sum of two contributions:

E ¼ ECðfnigÞ þ ENCðh; TÞ ðEq 11Þ

where ECðfnigÞ and ENCðh; TÞ are configuration dependent
and independent contributions, respectively, and h is the
concentration defined as hydrogen/metal ratio which is
equivalent to the point probability xi in Eq 2 to 4. The
configuration independent term ENCðh; TÞ suggests a long
range elastic interaction force induced by the absorption of
H and, based on elasticity theory, this term is described[20] in
a polynomial expansion in powers of a point correlation
function n1:

ENCðh; TÞ ¼
Ximax

i¼0
aiðTÞ � ni1 ðEq 12Þ

Note n1 is linearly related to the concentration, h, through
h ¼ ð1=2Þ � ð1þ n1Þ, which is a particular expression of
Eq 3 for a points cluster.

Then, by subtracting ENCðh;TÞ from the experimentally
obtained E(h,T), the remaining configuration dependent
energy ECðfnigÞ is determined in the following form of
cluster expansion given in Eq 1:

Table 1 Clusters considered in the tetrahedron-octa-
hedron approximation of the cluster variation method
(CVM)

n1 n2,1 n3,1 n4,1 n2,2 n3,2 n4,2 n4,3 n5,1 n6,1

Lattice points a ab acd abcd ag ace acde cdef acdeg acdefg

a–g correspond to Fig. 1.

a

d

c

b

f

g

e

Fig. 1 Fcc lattice and a basic cluster employed in the Tetrahe-
dron-Octahedron approximation of the cluster variation method
(CVM)
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ECðfnigÞ ¼
Ximax

i

vi � ni ðEq 1Þ

In a first principles calculations, {vi} are determined based
on the electronic structure total energy calculations on a set
of ordered compounds, while for the phenomenological
schemes such as the present investigation, these are
determined by trial-and-error schemes. The values deter-
mined[2,3] for the nearest (v2,1) and second nearest neighbor
pairs (v2,2) and triangle (v3) interaction energies are
6:08� 10�3 ðRydÞ; 7:06� 10�4 ðRydÞ and )2.84 · 10)3

(Ryd), respectively.
A peculiar feature of the Pd-H system is that the phase

separation and ordering reaction coexist in the phase
diagram. This is due to the interplay between ECðfnigÞ and
ENCðh; TÞ. The elastic interaction energy ENCðh; TÞ inher-
ently drives the system into phase separation. On the other
hand, ECðfnigÞ is the chemical interaction force confined in a
few atomic distances and the positive value of v2,1 indicates
the ordering tendency. These two competing forces are the
origins of the occurrence of the phase separation in the high
temperature region and the ordering in the low temperature
region. The present author and Oates[2,3] successfully
reproduced both the phase separation and ordering phase
equilibria from a single free energy formula.

The diffuse intensity calculation ISROðk; TÞ performed
for the four kinds of ordering wave vectors, k, in the
previous study[3] suggests ISROðk ¼ 1; 1=2; 0Þ>ISROðk ¼
1; 0; 0Þ>ISROðk ¼ 1=2; 1=2; 1=2Þ>ISROðk ¼ 0; 0; 0Þ for an
entire temperature range T. In particular, ISROðk ¼
1; 1=2; 0Þ is amplified as approaching some temperature
T* = ~ 200 K with decreasing the temperature and all
others decay, indicating that the system is unstable against
the excitation and amplification of Æ1 1/2 0æ ordering wave
which is propagated to form the Chalcopyrite ordered
structure at low temperature. The intersection of the free
energies (grand potential) of the disordered and Chalcopy-
rite phases at 50 at.% indicated[2] that the ordering transition
takes place at Tt ¼ 216K.

It is realized that the appearance of the Chalcopyrite
structure is not trivial. Although the ground state analysis[21]

within the first and second nearest neighbor pair interaction
energies predicted that the Chalcopyrite ordered phase is the
most probable ordered phase with positive v2,1 and v2,2
described above, the existences of three body interaction
energy v3 and configuration independent energy ENCðh; TÞ
obscure the analysis. One notices that the short range order
diffuse intensity calculation is quite powerful for predicting
the possible ordered phase at low temperature. Another
point is that T* is identified as the spinodal ordering
temperature T0. In view of the closeness of Tt and T0,
weakly second order characters are expected for the
disorder-Chalcopyrite transition.

The information in the correlation function {ni} for the
equilibrium state can be employed[2] to investigate the site
occupancy of H. By noting that a disordered phase is split
into two sublattices, a and b, upon ordering of Chalcopyrite
structure, temperature dependence of the LRO parameter
g ¼ na

1 � nb
1 was calculated.[2] The results indicate that H

predominantly occupies the a sites in the low temperature
region, while around T ¼� 150K, H starts to be transferred
from a to b sites, and at the transition temperature Tt ¼ 216K
the distinction between two sublattices disappear. Similar
calculations have been extended to multibody correlation
functions and the results have already been reported else-
where.[2] In this manner, from a single free energy formula
F ({vi},T;{ni}) of the CVM, it is demonstrated that the first
order derivative @F=@ni provides information of phase
equilibria, the second order derivative @2F=@n2i can be
employed to analyze the stability of the system against an
excitation of a particular ordering wave, and that the
equilibrium ni yields direct information of atomic configu-
ration including site occupancies and site correlations.

3. Superabundant Vacancies

3.1 Theoretical Descriptions

In the calculations of Pd-H phase equilibria described in
the previous section, what was considered is the Vac-H
phase equilbria merely in the O-sites (interstitial site), which
form fcc lattice. Superabundant vacancies, however, are
induced by cooperative reactions of M (Metallic atom), H
(hydrogen), and Vac (vacancy), and importantly Vac are
introduced into the substitutional site (Metal site) with the
absorption of H in the interstitial site. Hence, in order to
fully account the configurational thermodynamics of SAV, it
is necessary to construct a basic cluster, which contains both
the substitutional and interstitial sites. It is realized that a
square lattice shown in Fig. 2 contains both substitutional
lattice sites ð�Þ and O-site ð(Þ, and a square (shadowed) is
regarded as the most primitive basic cluster which meets the
above condition. Hence, we employed square approxima-
tion of the CVM.

The internal energy per a lattice point within the pair
interactions can be written as

E ¼ Z1
2
�
X

ij

eð1Þij � yij þ
Z2
2
�
X

ij

eð2Þij � Yij ðEq 13Þ

Fig. 2 Fcc lattice and a square lattice as a basic cluster of the
square approximation of the cluster variation method (CVM). s
(normal lattice site) and h (Octahedral interstitial site) are desig-
nated as a and b sites, respectively
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where Z1 (Z2 ) is the number of the nearest neighbor (second
nearest neighbor) lattice points, which is four (four) for the
square lattice, eð1Þij eð2Þij

� 	
is the atomic pair interaction energy

for the nearest neighbor (second nearest neighbor) pair, and
yij and Yij are nearest and second nearest neighbor pair
probabilities, respectively. For the sake of convenience,
normal lattice sites and O-sites are designated as a and b,
respectively, and yij and Yij are rewritten as yab

ij ; Y
aa
ij , and

Y bb
ij in the following.
In order to assign the pair interaction energy, a Lennard-

Jones type potential is assumed,

eijðrÞ ¼ e0ij
rij
r

� 	m
�2 rij

r

� 	nn o
ðEq 14Þ

where i and j indicate metallic species (M), hydrogen (H)
and vacancy (Vac). In the present calculation, m = 8 and
n = 4 are assigned as the exponent terms. The first term and
second term indicate the repulsive and attractive potentials,
respectively, and e0ij is a measure of the depth of the potential
while rij corresponds to the atomic distance at the bottom of
the potential. The parameters employed in the present study
are tabulated in Table 2. It is assumed that no interactions
with Vac exist. The smaller values of rHH as compared with
rMM indicate the smaller size of hydrogen. By assigning
stronger interaction between M and H, one may expect to
induce the alternative alignment of M and H on a and b
sites, respectively, which is the configuration of the metal-
hydrogen system.

At this point, the physical significance of the pair
interaction energies assumed in the present calculations are
discussed by referring to Fig. 3(a, b). In these figures, an
open (solid) mark indicates that the lattice point is occupied
by M (for a site) and H (for b site) while the solid mark
suggests a vacant (occupied by Vac) site. In Fig. 3(a), a sites

are occupied by M and b sites are by H and Vac. Then, the
pair interaction energies between a)a and a)b reflect the
cohesive energy of metal M and dissolution energy of H in
the matrix of M, respectively. In Fig. 3(b), one of a sites is
occupied by Vac. In this case, the nearest neighbor pair
interaction energy between a )b is the trapping energy of
Vac by H which occupies b site, while the second nearest
neighbor pair interaction energy between a )a reflects the
formation energy of vacancy in the M lattice.

It is recalled that phase equilibria for Pd-H system in the
previous section was reduced to vacancy (Vac) )H binary
equilibria on the b lattice immersed in the Pd atoms which
fully occupy a sites. Hence, the nearest neighbor pair
interaction v2,1 discussed in the previous section corre-

sponds to eð2Þii þ eð2Þjj

� 	
=2� eð2Þij across b )b pair in the

present square cluster. The positive v2,1 determined in the
previous section introduces Vac by enhancing the ordered
configuration of H and Vac in the b lattice, which is realized
to be an unfavored initial configuration in the present
simulation of SAV. The Lennard-Jones type potential given
in Table 2 avoids such an unfavorable configuration by
explicitly introducing the nearest neighbor (corresponding
to one half the nearest neighbor of the fcc lattice) pair
interaction with a deeper potential for H)M pair. In fact, the
energetics for binary Pd-H (Vac-H) equilibria introduced in
the previous section is not sufficient to discuss the SAV, and
the determination of realistic atomic interactions for ternary
M-H-Vac remains as a future subject. The Lennard-Jones
potentials introduced in the present study are regarded as
preliminary potentials, which reveal minimum essential
physics of the SAV.

The entropy is evaluated based on the square approxi-
mation of the CVM.[22-24]. The main task of the CVM is to
assign the exponential term for each cluster probability. This
is determined by several methods. In the present investiga-
tion, we employed Barker�s procedure[25] and the following
expression was obtained:

S ¼ kB � ln

Q
i;j
Nyab

ij !

 !2

Q
i
Nxa

i !

� �1=2

�
Q
i
Nxb

i !

� �1=2

�
Q
ijkl

Nwijkl!

 !

ðEq 15Þ

Then, the final expression of the free energy is given by
combining Eqs 13 and 15 in the following way:

F ¼ E � T � S

¼ Z1
2
�
X

ij

eð1Þij ðrÞ � yij þ
Z2
2
�
X

ij

eð2Þij ðrÞ � Yij

� T � kB � ln

Q
i;j
Nyab

ij !

 !2

Q
i
Nxa

i !

� �1=2

�
Q
i
Nxb

i !

� �1=2

�
Q
ijkl

Nwijkl!

 !

ðEq 16Þ

(a) (b)

Fig. 3 Two typical configurations on the basic cluster. Open
circle (square) indicates that the a (b) site is occupied by metal
(hydrogen) while the solid mark indicates that the site is vacant.

Table 2 Lennard-Jones parameters employed in the
present calculation

H-H H-M M-M

e0ij 1.0 2.0 1.0

rij 1.0 1.1 1.2
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It is noted that unlike the case of Pd-H phase equilibria
studied in the previous section, the determination of the
phase equilibrium in the present section claims the minimi-
zation of F not only with respect to cluster probabilities
(correlation functions) but also with respect to r:

@F

@fnig

����
T ;r;fnj 6¼ig

¼ 0 ðEq 17Þ

and

@E

@r
/ @E

@V
¼ �p ffi 0 ðEq 18Þ

In general, the indices i and j run from 1 to 3 corresponding
to M, H, and Vac. Therefore, the vacancy concentration,

xa
3 xb

3

� 	
, which is one of the main concerns of the present

study is obtained as the by-product of the minimization of F.

4. Results

Shown in Fig. 4 is the concentration of Vac as a function
of the absorption (concentration) of H up to 50% at T = 1.1
where T is the normalized temperature by e011. The
concentration of Vac nearly stays the same level for an
entire range of concentration of H. In fact, a slight amount
of Vac shown in the figure under the absence of Vac-H
interactions is primarily due to the entropy effect. Although
one should not forget the indirect interaction through the
lattice expansion with the absorption of H, which may

enhance the formation of Vac with less energy expenditure,
such an indirect interaction may induce more significant
concentration dependences especially at the initial stage,
i.e., in the lower concentration range of H. We point out that
the explicit consideration of long range elastic interactions
through the expansion of matrix lattice due to the absorption
of H and the contraction by the formation of Vac remain as
one of the essential subjects in the future investigation.

Then, in order to investigate the trapping effect of Vac by
H two kinds of Lennard-Jones type interaction energies are
introduced between H and Vac. The Lennared-Jones
parameters of two cases (Case 1 and Case 2 as abbreviated
as C1 and C2, respectively) are tabulated in Table 3 in
which one sees that C2 is deeper than C1. The resultant
concentration of Vac calculated for each case is shown in
Fig. 5 as a function of H. One sees that the absorption of H
induces the Vac in both cases. Furthermore, one confirms
that the stronger the trapping is (C2), the higher the
concentration of Vac becomes. This way, a preliminary
calculation based on the CVM is able to confirm the essence
of the SAV as the trapping effect of Vac by H.

There are, however, number of points to be settled in the
future investigations. One is that more realistic interaction
energies among three kinds of species should be introduced
by electronic structure calculations. The Lennard-Jones type
potentials are oversimplified potentials for describing the
interaction involving vacancies and atoms in the interstitial
sites. Cluster expansion method, which was discussed in the
previous section has been recognized as most powerful
means to extract effective interaction energies. The selection
of the super-cell structure for the metal hydrogen system
including vacancies may be a challenging subject.

The second one is the local relaxation effects on the
entropy calculations. Around the vacancy, one may expect a
significant local relaxation effects, which alter the symmetry
of the lattice. Hence the conventional square approximation,
which assumes the equivalence of local and global symme-
tries, may not be justified. For this, continuous displacement
cluster variation method (CDCVM)[22-24,26] should be
addressed. The CDCVM was initiated to describe a free

Table 3 Lennard-Jones parameters for the additional
interaction between hydrogen and vacancy

C1 C2

e0HV 0.5 1.2

rHV 1.0 1.0

0

0.00005
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Fig. 4 Vacancy concentration as a function of hydrogen absorp-
tion when no interaction between hydrogen and vacancy is as-
sumed
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Fig. 5 Vacancy concentration as a function of hydrogen absorp-
tion for two kinds of interaction between hydrogen and vacancy.
The Lennard-Jones parameters for C1 and C2 are tabulated in
Table 3.
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energy of liquid, and the main attention has been recently
turned towards the description of a topologically disordered
structure of an alloy. The development of the CDCVM is
still underway and full effort should be directed. Also, the
two dimensional square lattice is the most primitive basic
cluster and one needs a larger cluster in order to describe a
realistic ordered phase such as the Chalcopyrite structure
mentioned in the previous section. Finally, Vac and H are
dealt with as conserved quantities in the present calcula-
tions. In reality, however, a system is open to both H and
Vac and, therefore, one may not be able to map M-H-Vac
equilibria onto a conventional ternary phase equilibria of a
metallic alloy system. More rigorous studies are now
undertaken and will be reported elsewhere.
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